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LETTER TO THE EDITOR 

A triangularization algorithm which determines the Lie 
symmetry algebra of any system of PDES 

G J Reid 
Department of Mathematics, University of British Columbia, Vancouver, British Columbia 
V6T 1Y4, Canada 

Received 18 July 1990 

Abstract. We present several algorithms which have been automated in the symbolic 
language MACSYMA. Algorithm STANDARD FORM reduces any system of linear PDES 

to a simplified triangular form which has its integrability conditions identically satisfied. 
Generally a system's standard form is more amenable to numerical or analytical solution 
techniques than the system itself. The dimension of the solution space and the consistency 
or inconsistency of a system are directly determinable from its standard form. Algorithm 
TAYLOR uses a system's standard form to compute its Taylor series solution to any 
prescribed finite degree. We present an algorithm STRUCTURE CONSTANT based on 
STANDARD FORM and TAYLOR which, unlike existing symbolic algorithms for deter- 
mining symmetries, always computes the dimension and structure constants of the Lie 
symmetry algebra of any system of PDES. 

Systems of linear algebraic equations which arise in applications seldom appear in 
simplest form. However such systems can be converted to row-reduced echelon form 
by applying a finite number of elementary row operations. This triangularized form 
expresses certain (leading) variables as linear combinations of other (parametric) 
variables which can be assigned arbitrary values. The dimension of the solution space 
of a system is equal to the number of its parametric variables. 

We present an algorithm (STANDARD FORM) which brings arbitrary systems of 
linear P D E ~  in m independent variables x = ( x l ,  x z ,  . . . , x , )  and n dependent variables 
V =  ( V l ( x ) ,  . . . , V,,(x))  to a simplified triangular form by applying a finite number of 
elementary operations consisting of additions, multiplications and differentiations. The 
standard form has all of its integrability conditions satisfied and is based on the classical 
theory of involutive systems [ l ,  21 (see [9] for a REDUCE program for constructing 
involution systems). If two systems of PDES in the same dependent and independent 
variables have the same general solution then their standard forms are identical. The 
standard form of a system expresses certain leading derivatives of the V, as functions 
of other parametric derivatives. All derivatives of the V, that cannot be obtained by 
differentiation of leading derivatives of the standard form are called parametric deriva- 
tives. The algorithm which determines this parametric set is called INITIAL DATA 
since the assignment of values to the parametric derivatives at an initial point x = xo 
uniquely determines the values of all other derivatives of the V, at x = xo. The dimension 
of the solution space of a system is equal to the number of parametric derivatives and 
may be finite or infinite. Algorithm TAYLOR uses a system's standard form and initial 
data to compute its Taylor series solution about a point x = xo to any desired finite 
degree. 
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We consider the application of the above algorithms to the associated overdeter- 
mined systems of linear homogeneous PDES (the determining equations) whose solution 
determines the infinitesimal generators of the Lie symmetry algebra of a given system 
of PDES. The physical importance of finding symmetries of PDES [ 3 , 4 ]  has led to the 
development of heuristic-based symbolic programs for setting up and attempting to 
solve determining equations [ 5 , 6 ] .  A heuristic-free algorithm STRUCTURE CON- 
STANT is presented which determines both the dimension and structure constants of 
the Lie symmetry algebra of any system of PDES in a finite number of steps. Our work 
complements integration-dependent techniques [ 5 ,6 ]  in that the standard form of a 
determining system is often more amenable to explicit solution by these techniques 
than the original system. In [7] our methods are extended to form an algorithm that 
group classifies entire classes of PDES depending on variable coefficients. For example 
when this method is applied to group classification of the nonlinear telegraph system 

4, = *y 4 y  = C($)$t + B ( $ )  ( 1 )  

it reveals [ 7 ]  that ( 1 )  has an infinite parameter Lie symmetry group if the variable 
coefficients B, C satisfy the classification conditions C’ = 2B’C/ B, B” = 2( B’ )2 /B .  In 
these cases ( 1 )  is exactly linearizable [ 3 , 8 ]  and B ( $ )  = K ] / ( $ - A ) ,  C ( $ )  = K ~ / ( $ - A ) ~ .  
In addition if B ( $ )  = ~ ~ $ ” 1 / [ 1 +  v,$’I] and C ( $ )  = K ~ $ ’ Z / [ ~  + Y ~ ~ ) ’ I ] ~  then system ( 1 )  
possesses [ 7 ]  a non-trivial Lie symmetry with generator 

a a 
-$ - -32+  v2)(b-.  

a$ a4 

The constants K ] ,  K ~ ,  v l ,  v2 ,  v3, h are arbitrary and can be used as fitting parameters 
in physical applications. 

The derivatives of the V, (including zeroth-order derivatives) will be denoted 
by aal+-.+a mV,/ax;l..  .ax:m := DaVp where a = ( a , ,  . . . , a,)  and ord(a):= 
a, +. . . + a,,, 9 0 is called the order of the derivative. We define the following total 
ordering > s  on the set of derivatives (other orderings are possible [ 2 ] ) .  

We say that DaVp > s  DbVq if (i) ord(a) > x  ord(b), or, (ii) ord(a)=ord(b)  and 
p q, or, (iii) ord(a) = ord(b), p = q and a >lex  b, where the lexicographical order- 
ing >lex  is defined by a >lex  b iff the first non-zero ak - bk > 0. 

The leading derivative for an equation is the unique derivative in the equation 
which is highest in the ordering>,. 

Algorithm 1:  STANDARD FORM (a) 
Input: Any system of linear PDES D with dependent variables V I ,  V, ,  . . . , V, and 
independent variables x l ,  . . . , x,. 
Output: If D is consistent then STANDARD FORM returns a system of linear P D E ~  
@ ( D )  having the same solution as D in the solved form 

Db vp = A b  ( 2 )  

where DbVp E 9 and 
(i) the derivative on the LHS of any equation in ( 2 )  is strictly higher in the ordering 
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> s  than any derivative in the RHS of the same equation (we call 2 the set of leading 
derivatives for (2)); 

(i i)  no derivative appears on both the LHS and RHS of (2); 
(iii) the derivatives on the LHS of (2) are all distinct; 
(iv) no derivative in (2) is a non-trivial derivative of any derivative on the LHS 

(v) the integrability conditions of (2) are identically satisfied modulo all lexico- 
of (2); 

graphic substitutions which follow from (2). 
Method 
1.0. Set 6 = D. 
1.1 .  From the set of equations in which are not in solved-form with respect to their 
leading derivatives (i.e. have form 0 = RHS), select an equation with leading derivative 
which is highest in the ordering > s  and solve it for this derivative (i.e. the equation 
now has the form leading derivative = RHS).  Use the equation to elimintte all explicit 
occurrences of this leading derivative in the remaining equations of D. Repeat this 
process until 6 is obtained in the form of a system which satisfies conditions (i), (ii) 
and (iii) above. 
1.2. If any derivative in 6 is a non-trivial derivative of any derivative on the LHS of 
D then make the implicit substitution of the latter derivative into the former (if the 
derivative in which the substitution is made is a leading derivative then the equation 
to which it belongs is reverted to the form 0 = RHS).  Continue this process until no 
further substitutions are possible. 
1.3. If D no longer satisfies conditions (i), (ii), (iii) then return to step 1.1; otherwise 
continue to step 1.4 with a system which now satisfies (i);(iv). 
1.4. Calculate the minimal integrability conditions Zmin of D. If Imi, # 0 when simplified 
modulo all lexicographic substitutions which follow from 6 then append the simplified 
Zmi, to D and return to step 1.1.  If Zmi,=O then calculate the maximal integrability 
conditions ImaX and simplify these conditions subject to all lexicographic substitutions 
which follow from D. If Imax=O then STANDARD FORM has terminated with a 
system @ ( D )  = 6 satisfying conditions (i)-(v) above; if not I,,, is appended to 6 and 
the system is returned to step 1.1 .  

If at any stage the algorithm uncovers a non-trivial equation of the form O = f ( x )  
then the system is inconsistent and the algorithm returns that message. 

We noAw define the terms lexicographic substitution, Imin, I,,, referred to in 1.4. 
Suppose D is a system which satisfies conditions (i)-(iv) above. The unique substitution, 
if it exists, DaVp = Da-b*(Db*Vp) = Da_b*&,b* where Db* V, is the leading derivative in 
2 with greatest lexicographical index b* such that ak 2 bk* , k = 1 , .  . . , m, is called a 
lexicographical substitution (thus for all b E 2 with bk 2 ak, b* 6 ) .  When the total 
derivative Da-b* Fpb* has been evaluated, further lexicographic substitutions from fi 
may be possible. After a finite number of such substitutions, however, any derivative 
D.V, is uniquely obtained as a function of parametric derivatives only, and we say that 
all possible lexicographic substitutions have been carried out. 

For every distinct pair of equations DaVp =ha, DbVp = f p b  in a system fi satisfying 
conditions (i)-(iv) it follows that for c = ( C k )  with ck 2 max{ak, b k }  we have the con- 
sistency conditions: 

Dc V, - Dc V, = Dc-a ha - Dc-bf,b = 0. (3) 
The minimal integrability conditions Zmin are the finite subset of the above conditions 
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with ck = max{ ak, bk} such that there is no other condition of form (3) with c  ̂ # c such 
that & S ck for all k. The maximal integrability conditions I,,, are the finite subset of 
the condition: (3) where max{ak, bk} s c k  s maxDivpE9{&}. Algorithm 1 eliminates 
equations in D which are total derivatives of other equations in 6, unlike the classical 
method for constructing involution systems [ 1,2] which includes such equations. A 
smaller set of integrability conditions can be obtained through a more detailed construc- 
tion involving our methods and those of [2]. 

Algorithm 2: INITIAL DATA 
Input: The leading derivatives ,-Y={DbVp} of a system @ ( D )  which is the standard 
form of a system D. 
Output: The parametric derivatives P = { D h V p }  and dim(D) the dimension of the 
solution space of D. 
Method 
2.1. P=U,”=, P, where P p = ~ p ( 0 ) - U , , ~ p , ~ ~ p ( b )  and W p ( a ) = { D c + a V p :  C k a O ,  

k = 1, . . . , m }  is the set of derivatives obtainable from DnVp by differentiation. 
2.2. dim(D) = #(P) where #(P) is the number of elements in B. 

Although step 2.2 apparently requires the enumeration of infinite sets it is 
reducible to a finitely computable one by considering the intersection of these 
sets with the smallest boxes a,( = { D , V p :  0 s  ak 6 maxD,Vps,iP{bk}}) containing the 
leading derivatives of the V, and the origin. In particular it is easily shown that P 
is finite iff for p = l ,  . . . ,  n and k - 1 ,  . . . ,  m, 3 D b V P C Z  with bl=O for l f k  
and then 9 = U ;=, 9, fl Pp ; otherwise P is infinite and the initial data can be uniquely 
specified by a finite number of constants and arbitrary functions (see [ 1,2 ,7]  and 
example 2). 

Algorithm 3: TAYLOR ($finite-dimensional case) 
Input: The standard form @ ( D )  of a linear system D, a fixed point xo, a degree 5 and 
a set of initial data D h V p ( x = x ~ =  constant = a,  where DhVp E P and the label s has been 
chosen so that s = 1 , 2 , .  . . , dim(D). 
Output: Taylor series representation of the solution of D to degree 5 subject to the 
above initial data. 
Method 
3.1. For ord(a) S 5 use repeated lexicographic substitutions from @ ( D )  to express 
D,V,, p = 1 , .  . . , n, as a function of parametric derivatives only. 
3.2. Evaluate D,V, at x = xo to obtain H i , ( x o ) :  D,V,lx=xo= Xdim(D) s = o  a s H i a ( X o ) .  
3.3. Form the Taylor series for V,(x)  to degree 5 about x = xo. 
3.4. By substituting for DaVp(x=xo from 3.2 into the Taylor series for V,(x)  found 
in 3.3 obtain a series representation for a basis of solutions V i ( x )  for D to degree 5 

where V, (x )  = Z:’?$ld”’ a , V i ( x ) .  If D is an inhomogeneous linear system then s = 0, 
ao= 1 and V,”(x)  corresponds to the inhomogeneous term in the solution V p ( x ) .  In 
the homogeneous case V i (  x)  = 0 = ( xo) .  
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If the coefficients in thefph in (2) are real analytic functions of x in some neighbour- 
hood of xo then the above series converge uniformly and absolutely in some neigh- 
bourhood of xo [ 1,2] .  Algorithm TAYLOR can be easily extended to cover the infinite 
dimensional case. 

Algorithm 4: STRUCTURE CONSTANT (finite-dimensional case) 
Input: Standard form @ ( D )  of the determining equations D for the infinitesimals 
(&(x) ,  ~ ~ ( x ) )  = ( V,(x)) characterizing the symmetries of a given system of PDES A ;  
initial data and dim(D) as calculated by algorithm INITIAL DATA. 
Output: The structure constants C:, for the Lie symmetry algebra 

d i m ( D j  

[ L , , L s l =  c c:sL7 1 < r <  s s d i m ( D )  
7 = 1  

of the system of PDES A. 
Method 
4.1. Choose an initial value for the degree l. 
4.2. Apply TAYLOR to @ ( D )  to obtain a series expansion about a fixed point x = xo 
to degree 4' for each member V;(x) of a basis for the infinitesimals vk(x). 
4.3. Substitute the truncated series obtained in 4.2 into the commutation relations: 

dim(Dj  

1 = 1,. . . , m ( = n ) .  ( 5 )  
k = l  t = l  

4.4. Comparing powers in (5) and taking into account the order of remainder terms 
yields a finite number of linear equations for the C:, . If these equations, when solved, 
completelyAspecify the C:, then the algorithm has terminated. Otherwise increase the 
degree to l>  5 and return to step 4.2. 

Algorithm STRUCTURE CONSTANT terminates in a finite number of steps since 
its non-termination would imply the impossibility of needing an infinite number of 
linear equations to determine a finite number of unknowns (the C:,). The method can 
be easily extended to identifying the structure and dimension of the maximal finite- 
dimensional subalgebra in the infinite-dimensional case [7]. STRUCTURE CON- 
STANT complements the results given in [ 101 which provide algorithms for classifying 
Lie algebras given that their structure constants are known. 

Nonlinear systems D are also explicitly reducible to standard form provided that 
the nonlinear equations which arise can be explicitly solved for their leading derivatives. 
Choosing orderings other than the standard one > s  can assist in this process. Even if 
an explicit reduction is not possible, judicious use of the implicit function theorem 
may still lead to partial results. 

We conclude with examples illustrating the algorithms STANDARD FORM and 
INITIAL DATA. 

Example 1 .  Consider D = { O =  V2xlxl- V,, O=2Vlx2xz+ Vl , , , , -2V~,I-  V2, O =  V,xlxlx2- 

( x l + l ) V ~ , ~ O =  V1,,,,- V21 where Vr= Vr(xI ,x2) ,  r =  1,2. 
Stepl . l .  Dconsistsoftheequations: ( a )  Vlx,x lxz=x1V2;  ( b )  VlXlxl= V,; ( c )  V,,,,,= V2; 
(4  V~,,,,= V2; ( e )  V2,,,,= V,; (f) Vz(%',= V,; ( g )  v,, = x l V 2 .  
Ste 1.2. We have ( a ) :  Vlxlx,x2-x1 V, = Vzx2-xlV2 %'> and ( e ) :  V2,1.y, - V2 c) V2,,- 
V2 = 0. So equations ( a )  and (e )  are removed from D. 

x ~ v z ,  o =  v 2 x l +  V I X , X , - ~ ~ ~ ,  o=  vi,,, ,-3vz,,+(3X,-1)v2, o =  &,,+ v~,l,,- 

p r j  



L858 Letter to the Editor 

a2 a2 

4 . 0 .  4 . 0 .  

3 . 0 . .  3 . 0 . .  

O O O . . .  o . . . . .  

0 1 2 3 4 a 1  0 1 2  3 4 a1 

Figure 1. Graphical representation of the sets Pp of parametric derivatives for the systems 
in standard form arising from example 1. A 0 located at ( a l ,  a?) indicates that 
aai+a2vp/axylax;z is a parametric derivative of V,,. ( a )  p = l ,  V,.,.,= V1,,,?= V,.,,,=O. 
( b )  p = 2 ,  v*=o. 

a2 

4 0 . .  

3 0 0 . .  

0 . 0 .  

0 l ~ o . . .  

0 1 2 3 4 a 1  
Figure 2. Same as figure 1, but for example 2. p = 1, V i r l y ,  = V,,,, = VLY2 

Step 1.4. Zmin = (0 = V2,, - V2,,, 0 = V,,, - ?,,, 0 = V2,, - ( V2 + xi V2x, ) } .  Simplification 
subject to lexicographic substitution from D gives Zmin = (0  = (x ,  - 1) V2 , 0 = (1 - x l )  V, , 
0 = - V,} # 0, so Imi, is appended to D. 
Step 1.1. We obtain V2 = 0 and 6 = {VI,,,, = 0, VI,,,, = 0, VI.,,, = 0, V, = 0). No change 
occurs at step: 1.2, 1.3. At step 1.4 Imi, = I,,, = 0 so STANDARD FORM terminates 
with @ ( D )  = D above. 
Step 2.1. d im(D)<m since VI,,,,, VI.,,, and V2 are in 2’. So P= 

Step 2.2. dim(D) = #(P) = 3 (see figure 1) with corresponding initial data Vl(xo) = e l ,  
Vlx,(xo) = a2 and V1,..(xo) = a3. 

(gl n PJ u (a, n 9,) = { vl, vIxl, vlxz}. 

Example 2. Consider D ={VI,,, ,  = VI,, , VI,,,, = VI,,} where Vi = Vl(x, , x,) which is 
already in standard form. dim(D) = CO since there is no equation of form ahVl/ax: =f 
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in D. B = { D(l,o) V,} U { D(o,o,) V ,  : a2 = 0, 1,2, . . . }. Equivalently the initial data and 
general solution of D depends on a single parameter D(l,o)Vllx=xo and a single arbitrary 
function V,(x: ,  x2) = g(x2) along the direction (0, 1 ) )  (see figure 2 and for general 
treatments [2,7]). 
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